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A series expansion method is employed to determine the first-order terms in curvature 
e and torsion 9 of fully developed laminar flow in helical square ducts and in helical 
rectangular ducts of aspect ratio two. The first-order solutions are compared to 
solutions of the full governing equations. For toroidal square ducts with zero pitch, the 
first-order solution is fairly accurate for Dean numbers, De = Reel'', up to about 20, 
and for straight twisted square ducts the first-order solution is accurate for German0 
numbers, Gn = 9 Re, up to at least 50 where Re is the Reynolds number. Important 
conclusions are that the flow in a helical duct with a finite pitch or torsion to the first 
order (i.e. with higher-order terms in e and 7 neglected) is obtained as a superposition 
of the flow in a toroidal duct with zero pitch and a straight twisted duct; that the 
secondary flow in helical non-circular ducts for sufficiently small Re is dominated by 
torsion effects; and that for increasing Re, the secondary flow eventually is dominated 
by effects due to curvature. Torsion has a stronger impact on the flow for aspect ratios 
greater than one. A characteristic combined higher-order effect of curvature and 
torsion is an enlargement of the lower vortex of the secondary flow at the expense of 
the upper vortex, and also a shift of the maximum axial flow towards the upper wall. 
For higher Reynolds numbers, bifurcation phenomena appear. The extent of a few 
solution branches for helical ducts with finite pitch or torsion is determined. For ducts 
with small torsion it is found that the extent of the stable solution branches is affected 
little by torsion. Physical velocity components are employed to describe the flow. The 
contravariant components are found useful when describing the convective transport 
in the duct. 

1. Introduction 
Curved ducts appear in various industrial applications, and a detailed knowledge of 

the fluid flow behaviour is important to be able to predict for example the pressure 
drop and heat and mass transfer characteristics. The curvature induces a secondary 
flow in the duct, which often is found to give increased heat and mass transfer rates. 

Previous work on curved duct flows is referred to in the review articles by Berger, 
Talbot & Yao (1983), Nandakumar & Masliyah (1986), Ito (1987) and Berger (1991). 
From these, it is evident that most theoretical studies concern toroidally curved ducts 
with zero pitch and with a circular cross-section. A toroidally curved duct with zero 
pitch is characterized by the centreline having a constant curvature K ,  which is equal 
to the inverse of the radius of curvature. Helically coiled ducts with a finite pitch are 
often used in practice, and they are characterized by the centreline having a constant 
curvature and a constant torsion 7. A straight twisted duct is obtained in the limit when 
the curvature tends to zero and while the torsion remains finite. A non-zero torsion 
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implies that a non-orthogonal coordinate system is the most appropriate one in a 
theoretical analysis. 

Flow in toroidally curved ducts with zero pitch has been the subject of numerous 
theoretical studies, ever since the pioneering work by Dean (1927, 1928a). His name is 
given to the Dean number, De = Reel’’, where the Reynolds number Re is based on 
mean axial flow and hydraulic diameter dh, and where the dimensionless curvature 
e = K d h .  The Dean number fully characterizes the flow in a loosely coiled duct (i.e. with 
small curvature). Different definitions of the Dean number have been used in the 
literature, see Berger et al. (1983) for a review. The definition used in this paper is 
helpful because it is directly related to the Reynolds number of the flow. 

Next, a few previous investigations considering toroidally curved rectangular ducts 
with zero pitch will be mentioned. Employing a series expansion method similar to the 
one by Dean (1927, 1928a), Ito (1951) and Cuming (1952) independently determined 
the first-order contributions to the flow in toroidally curved ducts of elliptical and 
rectangular cross-sections. The rectangular cross-section is less amenable to an 
analytical treatment, since each individual term of the power series in t is in turn 
obtained as an infinite series, and in general only a few terms of this series are 
determined. For example, the first-order secondary flow components obtained by 
Cuming (1952) for a square cross-section do not describe the two expected counter- 
rotating cells, so in this respect the analysis by Cuming is not sufficiently accurate. 
Mori, Uchida & Ukon (1971) performed a boundary layer analysis of the flow in a 
toroidal square duct with zero pitch. The boundary layer method is assumed to be valid 
for Dean numbers in the higher laminar regime; viscous effects are only considered in 
thin boundary layers close to the walls; in the central part of the duct, the fluid is 
assumed inviscid. A phenomenon that boundary layer theory fails to predict is the 
appearance of an extra vortex pair of the secondary flow near the outer wall of a curved 
square duct, when the Dean number is raised above a critical value of about 130. This 
phenomenon was first reported by Joseph, Smith & Adler (1975) and Cheng, Lin & Ou 
(1 976), who independently solved the governing equations using a numerical method. 
The phenomenon is sometimes referred to as ‘Dean’s instability’, after Dean (1928b), 
who analysed curved rectangular ducts of infinite aspect ratio, and found the primary 
flow to be unstable above a critical Dean number. The instability, which is of 
centrifugal nature, causes streamwise-orientated counter-rotating vortices, similar to 
the extra vortices in the square duct, see further e.g. Matsson & Alfredsson (1990). 
Winters (1987) performed an accurate determination of the solution structure for 
toroidal rectangular ducts with zero pitch. He discovered several solution branches, 
some of which were found to be unstable. The findings of Joseph et al. and Cheng et 
al. could now be explained as follows: the abrupt change of flow structure at the critical 
Dean number was due to a jump from the primary two-vortex S, branch to the four- 
vortex S, branch. Other references to the fully developed flow case are Ghia, Ghia & 
Shin (1987), Yanase & Nishiyama (1988), Daskopoulos & Lenhoff (1989), Thangam & 
Hur (1990) and Kao (1992). Duh & Shih (1989) examined inclined square cross- 
sections. Developing flow in toroidal rectangular ducts with zero pitch has been 
considered for example by Sankar, Nandakumar & Masliyah (1988), Soh (1988), Bara, 
Nandakumar & Masliyah (1992) and Mees (1994). 

Among the first to analyse, from a theoretical point of view, the effect of a finite pitch 
or torsion on the flow were Murata et al. (1981), Wang (1981) and Germano (1982), 
who all considered ducts of circular cross-section. Wang and Germano both employed 
a series expansion method, but while Wang found a first-order effect of torsion on the 
secondary flow, Germano only found a second-order effect. The reason for the 
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discrepancy was that different velocity components were used for the secondary flow. 
Wang employed so-called contravariant components, and Germano employed physical 
components, i.e. the velocity vector was expanded in a physical (i.e. an orthonormal) 
basis. The contravariant components are obtained when the velocity is expanded in the 
natural basis of the coordinate system (see $2 for a definition). However, for a non-zero 
torsion, the natural basis is non-orthogonal, and it also varies over the cross-section of 
the duct. This makes the natural basis and the resulting contravariant components 
inconvenient to use. The preferred way to describe the flow is using physical velocity 
components obtained from a basis which is constant over the cross-section. Then, in 
particular, the components are obtained as projections of the velocity vector on the 
respective base vectors, and it is easy to realize the behaviour of the flow. Actually, the 
result by Germano (1982), that torsion has no first-order effect on the secondary flow 
for a circular duct, may also be deduced from pure geometrical considerations, as 
explained in the next section. For ducts of non-circular cross-section, however, torsion 
has a first-order effect on the secondary flow, as remarked by Germano (1989), who 
studied elliptical ducts. Murata et al. (1981) employed physical velocity components, 
as did Kao (1987), who investigated higher-Re laminar flow in helical circular ducts 
using a finite-difference method. Other authors on helical circular ducts with finite 
pitch are Tuttle (1990), Xie (1990), Chen & Jan (1992) and Liu & Masliyah (1993). 
Tuttle suggested that the discrepancy between the results of Wang (1981) and 
Germano (1 982) could be explained by the circumstance that different frames of 
reference of the observer were employed. However, as discussed in Bolinder (1995 b), 
this is not correct, since, in particular, the angular velocity o which, according to 
Tuttle, should relate the two observers is not a constant, but varies over the cross- 
section of the duct. As remarked by Bolinder (1993) and Liu & Masliyah (1994), Xie 
(1990) fails to define a proper stream function for the secondary flow, and as a result 
of this, Xie predicts a turning of the secondary flow vortices due to the effect of torsion. 

The effect of torsion on the flow in helical square ducts has been investigated by 
Bolinder (1993, 1995a, b), Chen & Jan (1993) and Bolinder & Sunden (1995). Bolinder 
(1993, 1995b) solved the governing equations using a finite-volume method. The two 
unconditionally stable solution branches (S, and S,) detected for a toroidal square 
duct, were found to persist fairly unchanged if the duct was provided with a small 
torsion. This result contradicts the conclusion by Chen & Jan (1993) that ‘Dean’s 
instability’ can be avoided due to the effect of torsion. Bolinder & Sunden (1995) give 
experimental confirmation of the numerical results for helical square ducts with finite 
pitch, and a few observations concerning transition to turbulence are also provided. 

Flow in straight twisted ducts (with K = 0) has been analysed by among others 
Germano (1989), who considered an elliptical cross-section. He pointed out that for a 
loosely twisted duct, i.e. with a small dimensionless torsion 7 = dh, the governing 
equations depend on a single similarity parameter Gn = TRe, which, following Liu & 
Masliyah (1993), we call the Germano number. For the same parameter, Germano 
(1989) used the notation T and Chen & Jan (1992) the notation Tn. Flow in straight 
twisted rectangular ducts has been studied by Masliyah & Nandakumar (198 l), 
Nandakumar & Masliyah (1983) and Kheshgi (1993). 

In the present study, the first-order terms in curvature c and torsion 7 of the flow in 
a helical square duct and in a helical rectangular duct of aspect ratio two are explicitly 
determined by solving the appropriate first-order equations. The results are then 
compared to solutions obtained by solving the full unsimplified governing equations. 
In this way, the range of applicability of the first-order terms may be determined, and 
the character of the higher-order terms may be found in an indirect manner. Both the 
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first-order and the full governing equations are solved using a finite-volume method, 
which has proved effective in previous studies by the author. 

2. Governing equations 
The position vector of the centreline of a helical duct may be written 

r,(s) = Re&) + K8(s) e,, where 8(s) = s / (R2  + J?)l/’. (1) 

The parameter s, which is the arclength of the centreline, is used as a coordinate along 
the duct. 8 is a polar angle, R is the radius of the cylinder round which the centreline 
is coiled, and 2nK is the so-called pitch, see figure 1 ; e,, e ,  and e, are unit base vectors 
of the cylindrical coordinate system indicated in figure 1. The tangent t ,  normal n and 
binormal b of re are defined by 

1 N t = r : ,  n = - r  b = t x n ,  

where a prime denotes a derivative with respect to s. Note that t ,  n and b are 
orthonormal. For the helical centreline described by (l), one obtains 

(2) 
K ” 

(3) I t(s)  = cos ae,(s) + sin aez, 

b(s) = - sin ae&) + cos ae, ; 
4 s )  = -er(s), 

a is the slope of the centreline relative to the plane z = constant. One finds that 

K 
(R2 + J?)1’2. 

sina = 
R 

(R2 + ’ 
cosa = 

The curvature K and the torsion 7 of r,  are defined by 

Equation (1) gives 
K = IrgI, 7 = n’eb. 

(4) 

( 5 )  

It is illustrative to evaluate (3), (4) and (6) for the special cases of a toroidal duct 
( K  = 7 = 0) and a straight twisted duct (R  = K = 0). Let x be a coordinate along the 
normal n and y a coordinate along the binormal b,  according to figure 1. Then the 
position vector of any point in the duct may be written 

r(s, x, y )  = rc(s) + xn(s) + yb(s).  (7) 

The present choice of x- and y-coordinate axes are appropriate for non-rotated cross- 
sections. For rotated or ‘inclined’ cross-sections, the x- and y-axes should instead be 
inclined to n and b,  so that the boundary conditions become easy to apply. This matter 
is further explored in Bolinder (1996). The so-called natural base vectors of the 
coordinate system (s, x ,  y),  which are tangents to the coordinate curves, are given by 

I ar 
a, = - = (1 - -x) t -7yn+Txb,  

as 
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FIGURE 1. The helical square duct. 

Thus, except for a toroidal duct (with T = O), the natural base vectors are non- 
orthogonal for points off the centreline. By expanding the velocity vector in the natural 
basis, one obtains the contravariant velocity components us, v" and vy .  Accordingly 

(9) v = v8a, + v"a, + vYay. 

However, if the natural basis is non-orthogonal, it is more convenient to expand the 
velocity in the physical basis ( t ,  n, b) according to 

v = w t + u n + v b ;  (10) 

w is then the axial flow, and u and ZI constitute the secondary flow. Note that, since 
( t ,  n, b) is a physical (i.e. an orthonormal) basis, the physical velocity components w, u 
and u are obtained as the projections of the velocity vector on the respective base 
vectors. The contravariant and the physical velocity components are related by 

where 
M =  1 - K X .  

To obtain a comparison of the consequences of using either contravariant or physical 
velocity components, consider the simple case of laminar fully developed flow in a 
straight circular duct. If there is no swirl, the secondary flow components u and u are 
zero. Since for the straight centreline both K and T are zero, we obtain from (1 1) that 
the contravariant and the physical velocity components coincide. Now, if we provide 
the centreline with a finite torsion, i.e. we rotate the x- and y-coordinate axes as we 
proceed along the duct, the physical secondary flow components u and u are still zero. 
The base vectors n and b are rotating along the duct, but the secondary flow 
components remain unchanged. If instead the flow is described using the contravariant 
components, we note from (1 1) that v" and vy are non-zero if 7 + 0. Further, by 
increasing 7, 0" and vY can obtain arbitrary large values. In view of these consequences, 
it seems advisable to describe the flow using physical velocity components. 

Essentially two methods have been used in the past to derive the governing 
equations. The method employed for example by German0 (1982, 1989) utilizes the 
fact that an orthogonal coordinate system is obtained if the x- and y-coordinate axes 

V~ = W/M,  U" = u + ~ y w / M ,  uY = u - ~ x w / M ,  (1 1) 
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are rotated with respect to n and b in a prescribed manner along the duct. The 
orthogonality makes it easier to derive the governing equations, but then the 
coordinates must be transformed to undo the rotation. The other method to obtain the 
governing equations utilizes standard tensor analysis (e.g. Sokolnikoff 1964) to derive 
the equations in terms of contravariant velocity components. To obtain the physical 
velocity components, the transformation given by (1 1) must then be employed. Note 
that the above two methods yield the same final result. Thus, the method by German0 
(1982, 1989) makes no simplifying assumptions as claimed by some authors, e.g. Xie 
(1990) and Chen & Jan (1992, 1993). Using basic vector and tensor analysis one may 
instead derive the governing equations directly in terms of the coordinates s, x and y 
and the physical velocity components w, u and v, see Bolinder (1996). The continuity 
equation and the Navier-Stokes equations, assuming an incompressible and fully 
developed flow, are obtained as follows: 

(12) 
a a 
- (Mu + 7yw) +-(Mu - 7xw) = 0, 
ax aY 

These equations correspond to (20)-(24) in Tuttle (1 990). The corresponding equations 
can also be found in a paper by Todd (1986). The assumption of a fully developed flow 
means that all s-derivatives are set to zero, except for the pressure derivative 
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g = -dp/&, which is assumed constant. Note also that the body force is assumed 
conservative, so that it may be included in the pressure p ;  p is thus a generalized 
pressure. At the boundary, the usual no-slip condition is assumed. 

A stream function $ = $(x, y), which automatically satisfies the continuity equation 
(12), may be defined according to 

$(x,y) = constant defines a three-dimensional surface, and V$ is normal to this 
surface. For a given s, $(x, y )  = constant defines a curve in the (n, b)-plane, and Vy? is 
orthogonal to the tangent of this curve. One can show that 

V$.(un+vb)  = 7w(xu+yv),  

which means that, unless r = 0, so that the above expression is zero, the curves 
$ = constant do not define streamlines for the secondary flow (un + vb). However, one 
finds that 

which proves that the velocity is tangent to the surfaces $ = constant. That is, these 
surfaces define streamtubes for the velocity field. Note that, if the contravariant 
components v” and v y  are used for the secondary flow, it is found that the curves + = 
constant do define streamlines for this ‘secondary flow’. $ may thus be employed to 
get a picture of the contravariant components v r  and v y .  According to the Navier-Stokes 
equations (13), the ‘convective velocities’ in the convection terms are precisely the 
contravariant components. This holds also for the scalar transport equations, such as 
the energy equation, see Bolinder & Sunden (1996). Thus, the contravariant velocity 
components are useful if one wishes to explain the convective transport of heat and 
momentum, for example. Obviously, the contravariant components include both the 
convective transport by the secondary flow components u and 2: and the convective 
transport by the axial flow w in the cross-plane due to the rotating cross-section for 
r =k 0. The latter transport may be easier to understand by considering a fluid element 
travelling in the direction of the tangent t only, i.e. with the secondary flow components 
u and v zero. In a duct with non-zero torsion, due to the ‘rotating’ walls, the fluid 
element will then occupy different locations in the cross-section at different axial 
positions, and it will appear as if the fluid element had non-zero secondary flow 
components. This apparent secondary flow consists of the terms ryw/M and rxw/M 
in (1 1). Note that, farther away from the centre-line, i.e. for large x and y ,  the apparent 
secondary flow becomes more important. Several previous authors on helical duct 
flows provide contour plots of $, for example Wang (1981), who studied low- 
Reynolds-number flow in a helical circular duct and found that $ shows a one-vortex 
structure for a relatively small torsion. If the secondary flow described by u and u had 
been plotted for the same flow case, two symmetric counter-rotating vortices would 
have been obtained, as for a toroidally curved duct with zero pitch. This reflects the 
second-order influence of torsion on the flow in a helical circular duct. 

Next to be derived are the first-order equations in t‘ and 7. Dimensionless quantities 
are defined according to 

V $ . v  = 0, 

(S ,  x, Y )  = (s, x, Y)ldh, (U,  K W )  = (u, 0, w) dJV, 
Y = $ /v ,  P = pdi/pv2,  t‘ = Kdh, 7 = rdh, 

Re = Wdh/v = W, Gn = VRe, De = ReelJ2, 
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where an overbar indicates mean value, and where the hydraulic diameter for a 
rectangular cross-section with half-width a and half-height b (see figure 1) is given by 

ab 
a+b‘ 

dh = 4- 

Assuming that the duct is loosely coiled and twisted, i.e. e + 1 and 7 4 1, and that the 
secondary flow is small compared to the axial flow, the dependent variables may be 
expanded in power series in e and 7 as follows: 

W =  W,+el+++y+ ..., U = eU,++U7+ ..., V =  E K + ~ % +  ..., ( 1 7 ~ , b , ~ )  

Y = G ~ + Y / ? +  ..., P = -GS+eP,+vP,+ ..., (174e )  

where the dots indicate terms of higher order in e and 9. The dimensionless axial 
pressure gradient - G is assumed constant, and it is further assumed that P, and do 
not depend on S. The method to expand in both the parameters e and 7 was first 
suggested by Tuttle (1990). It has the advantage that by letting 7 = 0, the flow in a 
toroidal duct with zero pitch is obtained, and by letting e = 0, the flow in a straight 
twisted duct is obtained. From (17) we also note that, if higher-order terms in e and 7 
are neglected (i.e. 2, v2, q etc.), the flow in a helical duct with finite pitch can be viewed 
as a superposition of the flow in a toroidal duct and a straight twisted duct. For 
example, since a straight twisted duct of circular cross-section does not differ from the 
straight untwisted duct, U ,  and V ,  are zero for a circular cross-section. Then, owing to 
the superposition principle, we may conclude that torsion has no first-order effect on 
the secondary flow in a helical circular duct with finite pitch. However, for ducts of 
non-circular cross-section, U, and V,  are likely to be finite, which implies that torsion 
has a first-order effect. 

By substituting the series (17) in the governing equations (12) and (13), and collecting 
terms independent of e and 7, the usual Poisson’s equation for the unperturbed axial 
flow W, is obtained, namely 

V 2 W o = - G  (18) 

where 

is the Laplacian operator. Setting 7 = 0 and collecting terms of order e, yields the first- 
order equations for the flow in a toroidal duct, which after eliminating the pressure 
terms in (13 b, c) read 

where the bi-Laplacian operator is given by 

According to (14), the stream function satisfies 
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Similarly, setting e = 0 and collecting terms of order q, yields the first-order equations 
for the flow in a straight twisted duct, namely 

aw, a W, 
v 2 y  = (U,,+ Yw,)---+(V,-XW,)-, ax ay 

V4Y 7 = -4G, 
where yl satisfies 

L3Y aY $ = UTI+ Yw,, -- ax = V,-xW,. 

Equations (20) and (23) for the stream functions, with the present no-slip boundary 
condition, are analogous to the equation for small deflections of a thin clamped plate, 
see for example Timoshenko & Woinowsky-Krieger (1959). From the theory of plates, 
it is also known that, for a rectangular boundary, it is not possible to obtain a closed- 
form analytical solution of (20) and (23), and it is often better to search for an 
approximate solution by a numerical method. 

According to (18)-(21), % is antisymmetric with respect to X = 0. This means that 
gives no net contribution to the mean axial flow, which in turn implies that there 

is no effect on the friction factor. We may also conclude that torsion has no first-order 
effect on the mean axial flow or the friction factor, since vJ is antisymmetric with 
respect to both X = 0 and Y = 0. W, is proportional to G, and from (17a) we then 
obtain, if only terms up to first order in e and are considered, that W, is proportional 
to the mean axial flow, since and W, do not contribute to the mean, as concluded 
above. w, is therefore also proportional to the Reynolds number, based on mean axial 
flow, i.e. 

W, - Re. 

Then, from (19)-(24), the following estimates are obtained : 

I U,, - Re'; - Re3, Re ;  

L$, V, - Re;  "I, - Re2. 

The strength of the secondary flow in a toroidal duct is thus to the first order 
proportional to €Re2 = De2, and the secondary flow in a straight twisted duct is 
proportional to qRe = Gn. The secondary flow in a helical duct with finite pitch, which 
to the first order is obtained as a superposition of the secondary flow in a toroidal and 
a straight twisted duct, is then proportional to the sum of €Re2 and qRe. This implies 
that, for sufficiently small Re, the torsion-dependent term dominates, and for 
increasing Re,  the curvature-dependent term eventually dominates. From (26), we also 
note that the first-order curvature-dependent perturbation to the axial flow c q  
dominates the torsion-dependent perturbation q W, in both the limits of high and 
low Re. 

An implication of the estimates in (26) is that the first-order coefficients U,, V ,  and 
rapidly become large as the Reynolds number increases, and for a relatively small 

Re the first-order curvature-dependent solution deteriorates and gives unrealistic 
results. The first-order coefficients U,, V ,  and W,, on the other hand, show a much 
milder increase with increasing Re, which suggests that the first-order torsion- 
dependent solution is accurate for relatively high Reynolds numbers. 

Note that the above estimates, in principle, are applicable to ducts of arbitrary cross- 
sections. Owing to the symmetry of particular cross-sections, however, some of the 
first-order coefficients are occasionally zero. For a circular cross-section, for example, 
U,, V ,  and W, are all zero, and for an elliptical cross-section, according to German0 
(1989), U, and V,  are finite, but W, is zero. 



122 C. J. Bolinder 

3. Numerical procedure 
The governing equations, i.e. the continuity equation (12) and the Navier-Stokes 

equations (1 3 a-c), are discretized and solved according to the finite-volume method 
with a staggered grid, see Patankar (1980). A steady, incompressible and fully 
developed flow is assumed. Central differencing is employed throughout. In fact, the 
hybrid difference scheme was implemented, which implies that upwind differencing is 
employed for the convection terms for a grid Peclet number greater than two. 
However, for a uniform 41 x 41 grid and for the flow rates considered in this study, it 
was verified that no upwind differencing emerged from the hybrid scheme. The 
velocity-pressure coupling was handled by the SIMPLEC algorithm of Van Doormaal & 
Raithby (1 984). Their recommended accelerated TDMA-solver was also found 
effective. A H-value of 1.9 was used for both the momentum and the pressure- 
correction equations. Under-relaxation factors of 0.6, 0.6 and 0.8 were used for the u, 
u and w momentum equations, respectively, and the pressure was under-relaxed by a 
factor of 0.9. The accelerated TDMA-solver was used together with an ADI-technique : 
one sweep in each direction for the momentum equations, and then ten sweeps for the 
pressure-correction equation, at  each iteration. The input to the computations was a 
previously converged solution with a new value of the negative pressure gradient g. The 
Reynolds number was then calculated from the converged solution. Convergence was 
forced to the maximum capacity of the computer, using single-precision arithmetic. 
This normally required about 500 iterations, except close to the so-called limit points, 
which for the present ‘transient’ solution procedure are characterized by an infinitely 
slow rate of convergence. A limit point marks the upper or lower limit of a solution 
branch, see further Bolinder (1995 b), where the limit points for helical square ducts are 
accurately determined using h2-extrapolation. Grid refinement studies using 61 x 6 1 
and 81 x 8 1 grids together with h2-extrapolation, indicated that the solutions obtained 
on a 41 x 41 grid are accurate within 1 %, based on comparisons of the friction factor 
for the various grids. 

The zeroth- and first-order equations (18)-(24) are solved according to a procedure 
similar to that for the full equations, but a non-staggered 41 x 41 grid is employed, and 
since the pressure terms have been eliminated no handling of the velocity-pressure 
coupling is needed. To provide the boundary conditions for the stream functions and 
yl, i.e. zero partial derivatives with respect to both X and Y,  the nodal values closest 
to the walls are forced to zero. When solving (20) and (23) for the stream functions 
and U,, an under-relaxation factor of 0.6 proved necessary, and about 5000 iterations 
were required for full convergence. The remaining equations involving the (ordinary) 
Laplacian operator required only 50 iterations, with no under-relaxation, for a full 
convergence. The solutions of the first-order equations are estimated to be accurate 
within 1 %, like the solutions of the full equations. 

4. Results and discussion 
4.1. Evaluation of jivst-order solution for ducts of square cross-section 

As concluded in $2, for a duct with non-zero torsion contours of the stream function 
Y do not represent the secondary flow as described by U and V. Therefore, vector plots 
are employed to present the secondary flow. Figure 2 shows the first-order terms of the 
secondary flow for a toroidal duct with zero pitch, i.e. U, and y, and for a straight 
twisted duct, i.e. U, and 7. For a toroidal duct, two symmetric counter-rotating cells 
are obtained, and for a straight twisted duct the fluid appears to be pushed by the 
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clockwise rotating walls, which gives a 'saddle flow' structure. Note that the 
appearance of the vector plots of the secondary flow to the first order are independent 
of the Reynolds number for both a toroidal and a straight twisted duct. However, as 
concluded previously, the strength of the secondary flow is proportional to €Re2 = De2 
for a toroidal duct and to VRe = Gn for a straight twisted duct. More specifically, 
according to a first-order analysis, the value of the maximum secondary flow in the 
cross-section relative to the Reynolds number, i.e. the mean axial flow, is given by 

( U 2 +  v21::, - { 0.017cRe for a toroidal square duct with zero pitch, (27a) 

The flow in a helical duct with finite pitch is to the first order obtained as a 
superposition of the flow in a toroidal and a straight twisted duct. Figure 3 shows the 

- 

Re 0.1449 for a straight twisted square duct. (27 b) 
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FIGURE 4. Maximum secondary flow in the cross-section relative to Re versus Re for toroidal and 
straight twisted square ducts. The solid line is from the numerical solution of the full equations and 
the dashed line is from the first-order solution. 

first-order solution of the secondary flow in a helical square duct with c = 7 for a few 
values of the Reynolds number. According to (6), a helical duct with E = 7 (i.e. K = 7) 

has a pitch 2nK which is 2n: z 6.3 times the radius R, i.e. a fairly large pitch. From (27) 
it follows that the torsion-dependent contribution to the secondary flow dominates for 
small Re (figure 3 a) ,  and for increasing Re the curvature-dependent contribution 
eventually dominates (figure 3 d). The respective contributions are of equal strength for 
Re = 8.45 (figure 3b). 

Equations (27a,b),  for E = 7 = 0.1, are plotted in figure 4 using dashed lines, 
together with data obtained from solutions of the full equations, using solid lines. For 
the toroidal duct, the first-order solution is relatively accurate up to a Reynolds 
number of about 60 (De = 19), where the overprediction is 6 % .  For higher Re, the 
first-order solution rapidly deteriorates. Actually, for Reynolds numbers greater than 
about 100 (De > 32), the relative strength of the secondary flow in the toroidal duct is 
approximately constant. Note that the gap in the solid line in figure 4 for Re between 
415 and 681 is due to the finite extent of the S, and S, branches. The S, branch ends 
at Re = 415 (De = 131) and the S, branch begins at Re = 681 (De = 215), see further 
the discussion in the next subsection. For the straight twisted duct, according to figure 
4 the first-order solution gives reasonable predictions for much higher Reynolds 
numbers. For example, for Re = 500 (Gn = 50), the relative strength of the secondary 
flow is underpredicted by 6 %  by the first-order solution. 

Figure 5 provides some vector plots of the secondary flow obtained from the 
numerical solution of the full equations. For a toroidal duct with E = 0.1 and Re = 60 
(figure 5a), the secondary flow is quite similar to the flow predicted by the first-order 
solution (figure 2a). The secondary flow vortices are shifted slightly towards the outer 
wall. If the curvature is increased to 0.4 (figure 5b), which implies that the Dean 
number is doubled from 19 to 38, the outward shift of the secondary flow vortices 
becomes more significant. For a straight twisted duct with 7 = 0.1 and Re = 500 
(Gn = 50), according to figure 5(c) the secondary flow is very similar to the first-order 
prediction in figure 2(b). A dimensionless torsion 7 of 0.1 implies that the walls of the 
straight twisted duct rotate one complete turn over an axial distance of 2n/7 z 63 
hydraulic diameters. For the case of 7 = 0.4 and Re = 500 (Gn = 200), shown in figure 
5 (d), the secondary flow vectors appear to be orientated along straighter paths between 
the walls, but the strength of the secondary flow is still only underpredicted by 6 YO by 
the first-order solution. According to the first-order results in (27), for helical ducts 
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with the same ratio of curvature to torsion c/y the appearance of the vector plots of 
the secondary flow depend only on the Reynolds number. For e = 7 = 0.1 and 
Re = 40, according to figure 5 (e)  the secondary flow is well predicted by the first-order 
solution in figure 3(d ) .  For the higher value of e = 7 = 0.4 shown in figure 5 ( f ) ,  
however, a significant enlargement of the lower secondary flow vortex, at the expense 
of the upper vortex, is observed, and the centre of the lower vortex is shifted towards 
the outer wall. In view of the above results for toroidal ducts with zero pitch, the shift 
towards the outer wall may be attributed to a higher-order effect of curvature alone. 
The enlargement of the lower vortex, however, cannot be attributed to a pure higher- 
order effect of torsion, which is very small at this low Re, but must be due to a 
combined higher-order effect of curvature and torsion (i.e. proportional to €7, 27 or 
ev2, for example). 

Vector plots of the contravariant components v" and uy are shown in figures 6(a)  and 
6 (b) for the same cases as in figures 5 (d) and 5 ( f )  respectively. For a toroidal duct with 
zero pitch, 2)" and v" coincide with the secondary flow components u and u. For a 
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FIGURE 6. Vector plots of contravariant components ux and u y :  
(a) t = 0, 7 = 0.4, Re = 500; (b)  e = 7 = 0.4, Re = 40. 

FIGURE 7. First-order perturbations of axial flow: 
(a) at Re = 60, viewed from outer wall; (b )  v,. 

straight twisted duct (figure 6 a), the contravariant components describe a counter- 
clockwise swirl-like motion, quite different from the clockwise-oriented secondary flow 
in figure 5 (d). For the helical duct in figure 6(b)  the contravariant components describe 
a two-vortex structure with a dominating upper vortex, i.e. the opposite behaviour to 
the secondary flow in figure 5 ( f ) .  

The first-order perturbations of the axial flow I.t: and y/ are shown in the three- 
dimensional plots in figure 7. The plot of % in figure 7 ( a )  is for a Reynolds number 
of 60. For this Re, the convection terms in (19) (those containing U, and y )  are 
dominating, and % is essentially proportional to Re3. is positive at the outer half 
of the cross-section and negative at the inner half. The net effect on the axial flow is 
accordingly a shift of the maximum towards the outer wall. For Reynolds numbers 
smaller than about 10, is instead proportional to Re, and contributes to a small shift 
of the axial flow towards the inner wall. The counteracting terms on the right-hand side 
of (19) balance each other at a Reynolds number of about 20, and for this Re no shift 
of the axial flow is obtained. The first-order perturbation of the axial flow due to 
torsion, i.e. W,, is shown in figure 7(b).  The form of W, is the same for all Reynolds 
numbers, and the strength is proportional to Re’. y, contributes to a counterclockwise 
‘rotation’ of the axial flow profile, see figure 8(c, d )  below. For a square cross-section, 
however, the effect is weak. For 7 = 0.1 and Re = 500, for example, the maximum of 
the torsion-dependent contribution 7 q/ is only 0.8 YO of Re. 

Contours of the axial flow for the same cases as in figure 5 (b, d , f )  are shown in figure 
8. On the left are the results from the first-order analysis, and on the right the results 
from the full equations. For the smaller value of curvature and torsion of 0.1 in figure 
5 (a,  c, e), the effect on the axial flow is small, and it is also well predicted by the first- 
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( a )  W,,, = 156 (b) W,, = 1 13, i = 1.166 

(C) W,, = 1040 

(e)  w,, = 87.9 ( f )  W,, = 79.8, I = 1.090 

FIGURE 8. Contours of axial flow from the first-order solution (u, c, e )  and from the solution of full 
equations (b, d,f>. (a,b) e = 0.4, 7 = 0,  Re = 60;  (c,d) e = 0, 7 = 0.4, Re = 500; ( e f )  e = 9 = 0.4, 
Re = 40. 

order solutions. Figure 8(a,b) shows the axial flow for a toroidal duct at a Dean 
number of 38. The first-order solution overpredicts the maximum by 38%, and it 
underpredicts the wall gradients and consequently the friction factor. According to the 
solution of the full equations, the friction factor ratio h = f R e / ( f R e ) ,  is 1.166 for 
the present case with De = 38, which is to be compared to the first-order prediction 
h = 1. The index s in the expression for h refers to a straight untwisted duct, for which 
f R e  = 14.22 for a square cross-section. For the case in figure 5(a) ,  with De = 19, h is 
only 1.022. The deficiency of the first-order solution for De = 38 may be attributed to 
the relatively large error in the secondary flow as predicted by the first-order solution at 
this Dean number. The axial flow in a straight twisted duct with a German0 number 
of 200 is shown in figure 8 (c, d). The maximum and the counterclockwise rotation of 
the contours are well predicted by the first-order solution. The solution of the full 
equations shows a slightly stronger rotation, and the central contours are more 
circular. The friction factor ratio h is only 1.8 YO higher than the first-order prediction 
h = 1. Finally, the axial flow in a helical duct with t: = = 0.4 and Re = 40 is shown 
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FIGURE 9. State diagram for toroidal square duct with R = 0.2. Secondary and axial flow at three 
states. Outer wall is to the right. 

in figure 8 ( e , f l .  The maximum is overpredicted by 10 % and the friction factor ratio 
is underpredicted by 8 % by the first-order solution. The outward shift of the maximum 
is well captured by the first-order solution, but not the significant upward shift 
observed in the solution of the full equations. The upward shift of the maximum is due 
to the convective transport caused by the contravariant components depicted in figure 
6(6). It must be due to a combined higher-order effect of curvature and torsion, since 
the upward shift is not observed for either a toroidal or a straight twisted duct. The 
effect can be qualitatively explained as follows : owing to torsion, the walls of the duct 
are rotating clockwise as one proceeds downstream; however the flow does not follow 
this rotation completely, but has a tendency to move straight forward in the duct; since 
the maximum axial flow is shifted outwards, owing to the effect of curvature, the 
‘incomplete’ clockwise rotation of the flow is reflected as an upward shift of the 
maximum. 

4.2. Bifurcation structure for  helical square ducts in the higher laminar regime 

For low enough Reynolds numbers, a unique and stable solution exists, which belongs 
to the so-called primary solution branch, labelled S, in the present study. For higher 
Reynolds numbers, additional solutions of branches other than the primary may 
appear. A limit point, or a one-sided bifurcation point, marks the upper or the lower 
limit of two connected solution branches, where at least one of the two branches is 
unstable, see further Benjamin (1978). 

Figure 9 is a state diagram showing the detected solution branches for a toroidal 
square duct with E = 0.2. The vertical axis is the U-component of the secondary flow 
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FIGURE 10. Extent of S, and S, branches for helical square ducts with E = 0.2. Secondary and 
axial flow at four states. Outer wall is to the right. 

at a point close to the outer wall. Three branches were detected, denoted by S,, S, and 
S,, following Winters (1987). Note that since the present solution procedure is 
transient, only stable solution branches can be detected. Winters employed a 'direct' 
solution procedure, and he detected several unstable branches as well. The precise 
locations of the limit points were determined by Winters by solving an extended system 
of equations. In Bolinder (1995b), the limit points were instead found by utilizing the 
phenomenon that, for a transient solution method, the limit points are characterized 
by an infinitely slow rate of convergence. Using h'-extrapolation, the results for the 
limit points by Bolinder (1995b) generally agreed well with the results by Winters 
(1987) and also Bara et al. (1992). According to figure 9, the primary S, branch ends 
at  the limit point L, at a Dean number of 142. Note that the locations of the limit 
points, for ducts of finite curvature, depend to a slight extent explicitly on the curvature 
6 (apart from the implicit dependence via De). For a toroidally curved circular duct, S, 
extends to much higher Dean numbers. Yang & Keller (1986), for example, found for 
a toroidal circular duct an upper limit of S, at a Dean number of about 1600 (which 
approximately corresponds to their D, = 25000), but the result depended strongly on 
the number of terms retained in their series expansions, see also the related study by 
Yanase, Goto & Yamamoto (1989). For solutions of the S, branch near to L,, 
according to figure 9, the secondary flow vortices are shifted towards the upper and 
lower walls, respectively, compared to the first-order solution in figure 2(a).  This shift 
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is even more marked for solutions of the S, branch. S, is an unconditionally stable 
branch, with lower limit L, at De = 230 and upper limit L, at De = 360, for € = 0.2. 
Winters (1987) did not consider high enough Dean numbers to be able to determine L,. 
Daskopoulos & Lenhoff (1989), however, report an upper limit of their corresponding 
branch, labelled ‘e’. It was decided, after an examination of the bifurcation diagram 
of Daskopoulos & Lenhoff, to denote the upper limit of the S, branch by L,. The S, 
branch is unstable to asymmetric perturbations, and could only be detected by 
imposing symmetry about the x-axis. Solutions of the S, branch have a pair of extra 
counter-rotating, so-called Dean vortices, at the outer wall. At the inflow region 
between these vortices, there is a deficit in the axial flow. The lower limit L, of S, is 
located at De = 122. No  precise upper limit of S, was determined, but converged 
solutions were obtained up to a Dean number of about 550. The S, and S, branches 
are connected by a genuinely unstable branch, which is designated S, by Winters 
(1987). This branch could not be detected in the present study, however. 

Figure 10 shows the extent of the S, and S, branches for helical square ducts with 
e = 0.2 and increasing torsion 7;  S, could not be detected for a finite torsion. Note that 
the pitch of the duct reaches a maximum where y = E ,  and that the duct with 7 = 1 
closely resembles a straight twisted duct. For ducts of small torsion, both the flow field 
and the extent of the detected branches are similar to the conditions for a toroidal duct 
with the same dimensionless curvature E .  The lower vortex of the secondary flow is 
enlarged at the expense of the upper vortex, and the axial flow only shows a very slight 
asymmetry. For 7 > 0.16, the S, branch could not be detected, and the extent of the 
S, branch at first decreases, and for even higher torsion it then increases to higher Dean 
numbers again. For high enough torsion, the secondary flow approaches a one-vortex 
structure, and the maximum of the axial flow is shifted towards the inner wall. The shift 
of the maximum towards the inner wall for 7 > 0.6 can be explained by the fact that, 
for 7 > 0.6, a straight path opens up at the inner wall in the direction of the central axis, 
r = 0. 

For completeness, the correlation for the friction factor ratio h = fRe/(fRe),, 
reported in Bolinder (1995 b), is repeated here : 

h = (1 +0.288De+8.8 x 10-sDe4)~o~3+0.107De1’2, De < 1500, 6 < 0.4, 6 1. 
€ 

(28) 
Equation (28) gives correct values at the limits of both high and low Dean numbers, 
and for c = 0.2 it deviates by less than 2 YO from the computed values of the two-vortex 
branches. For De < 6, however, smaller error is obtained by using h = 1. Equation (28) 
reflects the negligible influence of torsion on the friction factor ratio for y 6 E .  

For certain Dean numbers, no unconditionally stable, fully developed flow solutions 
are obtained, as for example between the S, and S, branches, and above S,. If one 
performs unsteady computations, for Dean numbers between L, and L,, assuming 
fully developed conditions and no symmetry about the x-axis, the flow is found to 
oscillate regularly between a two-vortex and a four-vortex structure. For a helical 
square duct with a finite pitch, this is shown in Bolinder & SundCn (1995). An 
analogous behaviour is reported by Sankar et al. (1988) and Bara et al. (1992), in their 
steady and parabolic computations of developing flow in a toroidal square duct with 
zero pitch; for Dean numbers between L, and L,, spatial oscillations develop, 
alternating between a two-vortex and a four-vortex structure. Mees (1994) continued 
the study of Bara et al. to higher Reynolds numbers. He also performed fully elliptic 
computations, assuming streamwise-periodic boundary conditions, and verified the 
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existence of so-called ‘twisting Dean vortices’, a type of secondary instability 
phenomenon that previously has been observed in high-aspect-ratio curved channels, 
e.g. Matsson & Alfredsson (1990). In the experiments on helical duct flows with finite 
pitch by Bolinder & Sundin (1995), a steady two-vortex flow was normally obtained 
for Dean numbers between L, and L,. Only by disturbing the flow at the duct inlet 
could a four-vortex flow occasionally be realized. 

4.3. Rectangular ducts of aspect ratio two 

Vector plots of the first-order solution of the secondary flow in rectangular ducts of 
aspect ratio b/a = 2 are shown in figure 11. For a toroidal duct with zero pitch, two 
symmetric counter-rotating cells are obtained. For a straight twisted duct, the fluid 
seems to be transported between opposite walls, in contrast to the twisted square duct, 
where the transport is between adjacent walls. The secondary flow in a helical duct with 
E = 7 and Re  = 80, which to the first order is obtained as a superposition of the flow 
in a toroidal and a straight twisted duct, is shown in figure 11 (c). The effect of torsion 
is an upward shift of both of the secondary flow vortices. 

The strength of the first-order contribution of the secondary flow relative to the 
mean axial flow, which for ducts of square cross-section is expressed by (27), for 
rectangular ducts of aspect ratio two is given by 

( U 2  + v2):cz = { 0.0092eRe for a toroidal duct with zero pitch, (29 a> 
Re 0.4837 for a straight twisted duct. (29 b) 

Accordingly, the secondary flow strength in the toroidal rectangular duct is about half 
the strength obtained in a toroidal square duct, and the strength in the twisted 
rectangular duct is about three times the strength in a twisted square duct. These 
circumstances imply that torsion will have a more significant first-order impact on the 
secondary flow at higher Reynolds numbers in helical aspect-ratio-two ducts than in 
helical square ducts. In the vector plot in figure 11(c), for example, which is for 
Re = 80, the first-order effect of torsion is clearly visible, which would not have been 
the case for a duct of square cross-section at the same conditions. The curvature- and 
torsion-dependent contributions to the secondary flow are of equal strength when 
( c / v )Re  = 52.7, compared to 8.45 for helical square ducts. The relation (29a)  for 
a toroidal rectangular duct is accurate at higher Reynolds numbers than the 
corresponding relation (27a)  for a toroidal square duct. For example, for c = 0.1 and 
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FIGURE 12. Vector plots of secondary flow obtained from the numerical solution of the full equations. 
(a )  e=0.1, ~ = 0 ,  Re=80;  (b) ~ = 0 . 4 ,  ~ = 0 ,  R e = 8 0 ;  ( c )  e = 0 ,  ~ / = 0 . 1 ,  Re=320;  ( d )  e = 0 ,  
~ / = 0 . 4 ,  R e = 3 2 0 ; ( e ) c = v = O . l ,  R e = 8 O ; ( f ) e = = = O 0 . 4 ,  Re=80.  

Re = 80 (i.e. De = 25), equation (29a) overpredicts the secondary flow strength by 
4.5 %. For a straight twisted duct, on the other hand, (29b) is less accurate at high Re 
than (27b); for '1 = 0.1 and Re = 320 (i.e. Gn = 32), (29b) underpredicts the secondary 
flow strength by 6%. 

Vector plots of the secondary flow obtained from the numerical solution of the 
full equations are provided in figure 12. The plots in figure 12(a,c,e) for the lower 
values of 6 and 7, are all in good agreement with the first-order solutions in figure 11. 
Higher-order effects of curvature and torsion on the secondary flow are seen in 
figure 12(b, d,f), where E and 7 are four times greater than in figure 12(a, c, e). For a 
toroidal duct with zero pitch, the secondary flow vortices shift towards the upper and 
lower walls, respectively. For a straight twisted duct, the secondary flow strength shows 
a relative decrease in the central part of the duct. For a helical duct finally, a 
(combined) higher-order effect of curvature and torsion is obviously an enlargement of 
the lower vortex of the secondary flow at the expense of the upper vortex, as was the 
case for a duct of square cross-section. 

The contravariant components for the cases in figure 12(d,J') are shown in figure 13. 
As in the case of a square cross-section, the behaviour of the 'flow' described by v" and 
vy is quite different from the secondary flow. 

The appearance of the first-order perturbation of the axial flow due to curvature, i.e. 
q, is similar for a duct of aspect ratio two and for a square duct. For Re < 25, is 
positive at the inner half of the cross-section and negative at the outer half, and for 
Re > 25, the conditions are reversed. The first-order perturbation due to torsion, i.e. FV,, 
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FIGURE 13. Vector plots of contravariant components vr and v y :  (a) 
(b) 6 = 7 = 0.4, Re = 80. 

E = 0, T = 0.4, Re = 320; 

FIGURE 14. W, for a rectangular duct with bla = 2 

for a duct of aspect ratio two, differs more fundamentally from W, for a square duct, 
as seen in figure 14. For a rectangular duct, qJ is no longer antisymmetric with respect 
to x = y and x = -y.  The maximum of W, in the cross-section relative to Re equals 
3.2 x lop4 Re, which is twice the value obtained for a square duct. 

Contours of the axial flow from the first-order solution and for the same cases as in 
figure 12(b,d,f) are shown in figure 15. In neither case is the first-order prediction 
accurate. For the straight twisted duct, the first-order solution predicts a slight 
clockwise rotation of the axial flow contours, while the rotation is actually 
counterclockwise and fairly strong. The specific form of the profile in figure 15(d) is 
explained by the convective transport caused by the contravariant components 
depicted in figure 13(a). Qualitatively, the form of the profile is explained by the 
clockwise-rotating walls, and the inability of the flow to follow the rotation completely. 
For the helical duct, a (combined) higher-order effect of curvature and torsion is as 
usual an upward shift of the maximum axial flow, which is caused by the convective 
transport by the contravariant velocity components shown in figure 13 (b). 

Regarding the bifurcation structure for higher Reynolds numbers, it was found by 
Shanthini & Nandakumar (1986) and Winters (1987) that the two-vortex branches S, 
and S, for a toroidal rectangular duct merge to one branch for an aspect ratio greater 
than 1.426. For an aspect ratio of two and c = 0.2, this is seen in the state diagram in 
figure 16. The upper limit L, of the primary S, branch is located at De = 191. The 
secondary flow vortices at L, are shifted markedly towards the upper and lower walls, 
respectively, and the axial flow contours are considerably elongated. A four-vortex 
branch, designated S,, was also detected. The lower limit L, of S, was determined as 
De = 108, and an upper limit, designated L,, was found at De = 260. As for a toroidal 
square duct, the S, branch is unstable to asymmetric perturbations. 
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(a) W,,, = 188 (6) W,, = 141, (C) W,, = 628 (d )  W,, = 650, 

FIGURE 15. Contours of axial flow from the first-order solution (a, c, e) and from the solution of the 
full equations (b, d, f ) .  (a, b) F = 0 . 4 , ~  = 0, Re = 80; (c, d)  E = 0 , ~  = 0.4, Re = 320; (e,f) E = 7 = 0.4, 
Re = 80. 

De 

FIGURE 16. State diagram for a toroidal rectangular duct with bla = 2 and E = 0.2. Secondary 
and axial flow at two states. Outer wall is to the right. 

The extent of the S, branch for helical aspect-ratio-two ducts with c = 0.2 and 
varying torsion is shown in figure 17. The extent decreases more rapidly than for square 
ducts, and for 9 > 0.9 a slight increase is obtained. For 9 = 0.2 at L,, the lower 
secondary flow vortex is considerably enlarged and the maximum axial flow is shifted 
towards the upper wall, and for 7 = 1 at L, the secondary flow describes a clockwise 
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FIGURE 17. Extent of S, branch for helical rectangular ducts with bla = 2 and 6 = 0.2. Secondary 
and axial flow at two states. Outer wall is to the right. 

swirl-like motion, while the maximum axial flow is slightly shifted towards the inner 
wall. 

5. Concluding remarks 
The first-order contributions due to curvature ( y ,  U,, y )  and due to torsion 

(W,, U,, V,) of fully developed flow in square ducts and in rectangular ducts of aspect 
ratio two have been determined numerically. The secondary flow in a helical duct with 
a finite pitch or torsion is to the first-order obtained as a superposition of the secondary 
flow in a toroidal duct with zero pitch and a straight twisted duct. Thus, for a 
duct of circular cross-section, there is no first-order effect of torsion on the flow. 
For non-circular ducts, however, the secondary flow is dominated by torsion 
effects for sufficiently small Re, and for increasing Re the secondary flow is eventually 
dominated by effects due to curvature. For a square cross-section, the curvature- 
and torsion-dependent contributions to the secondary flow are of equal strength 
when (t./v) Re = 8.45, and for a rectangular cross-section of aspect ratio two when 
( e / v )  Re = 52.7. Torsion has thus a stronger impact on the flow for an aspect ratio 
greater than one, which is not surprising. 

The validity of the first-order solutions was determined from comparisons with 
solutions of the full governing equations. For a toroidal square duct with zero pitch, 
the first-order solution is fairly accurate up to a Dean number of about 20, where the 
friction factor ratio h is underpredicted by 2 %  by the first-order solution. For a 
toroidal rectangular duct of aspect ratio two, the first-order solution has a similar 
accuracy up to De = 25. For a straight twisted square duct, the first-order solution is 
accurate at relatively high German0 numbers. At Gn = 200, for example, h is only 
underpredicted by 2 %  by the first-order solution. This is to be compared to an 
underprediction of as much as 15 YO at Gn = 128 for a straight twisted duct of aspect 
ratio two. For t. and 7 up to 0.4, it was found that the explicit effects of c and 7 are 
small, and that the flow is well correlated by De and Gn alone for toroidal and straight 
twisted ducts respectively. 
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For helical ducts of finite pitch, a significant higher-order effect of curvature and 
torsion was found to be an enlargement of the lower vortex of the secondary flow and 
a simultaneous shift of the maximum axial flow towards the upper wall. It was 
concluded that this effect is due to a combined effect of both curvature and torsion. 

For higher Reynolds numbers, bifurcation phenomena appear. Three solution 
branches were detected for a toroidal square duct with zero pitch, and two branches 
were detected for a toroidal rectangular duct of aspect ratio two. For helical ducts 
of small pitch or torsion, the extent of the detected two-vortex branches is hardly 
affected by torsion, and for 9 d e, torsion has a negligible influence on the friction 
factor ratio A. 

To describe the flow, the physical velocity components w,  u and u are employed. 
They are obtained from an expansion of the velocity vector in the physical basis 
( t ,  n, b). The contravariant components u” and uy, which are obtained from an expansion 
of the velocity vector in the natural basis of the coordinate system, were found useful 
when describing the convective transport in the cross-plane of the duct. The 
contravariant components include both the convective transport by the secondary flow 
and the convective transport by the axial flow due to the rotating cross-section for 
7 * 0. 

The present series expansion analysis could, in principle, be continued by 
determination of the second-order and even higher-order terms in curvature and 
torsion. However, improvement of the first-order solution would most likely be 
obtained only for small Reynolds numbers. To obtain convergence of the series at 
higher Reynolds numbers, many terms need to be determined, and a method of 
extended Stokes series (Van Dyke 1978) would probably be needed. For ducts of 
rectangular cross-section, this is not a realistic task, in particular since no closed-form 
expressions for the terms can be obtained. For ducts of triangular cross-section, 
however, it would be possible to apply the method of extended Stokes series, as 
suggested by Nandakumar, Mees & Masliyah (1993), since the terms in a series 
expansion may be obtained in a closed form. Nandakumar et al. show that when the 
cross-section of the curved triangular duct is orientated such that the outer wall is flat, 
the state diagram is similar to the state diagram for a curved square duct. 
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